新闻资讯

浅析数据治理中的缺点以及应对方法

数据治理中的应对型治理有哪些缺点呢?今天跟着我们的小编一起来了解数据治理中常见的问题及方法,一起来学习一下吧。


数据治理

  

应对型数据治理是指通过客户关系管理(CRM)等“前台”应用程序和诸如 企业资源规划(ERP)等“后台”应用程序授权主数据,例如客户、产品、供应商、员工等。然后,数据移动工具将最新的或更新的主数据移动到多领域MDM系统中。它整理、匹配和合并数据,以创建或更新“黄金记录”,然后同步回原始系统、其它企业应用程序以及数据仓库或商业智能分析系统。


  缺点:


  批量集成和应对型数据治理方法引入的时间延迟可能导致业务部门继续操作重复、不完整且不精确的主数据。因此,这会降低多领域MDM方案实现在正确的时间向正确的人员提供正确数据这一预期业务目标的能力。在期望被设定为数据将变得干净、精确且及时之后,批量集成引入的时间延迟让人感到沮丧。应对型数据治理(下游数据管理员小组负责整理、去重复、纠正和完成关键主数据)可能导致让人认为“数据治理官僚化”。


  应对型数据治理还会导致最终用户将数据管理团队看作“数据质量警察”,并产生相应的官僚化和延迟以及主数据仍然不干净的负面认识。这还将使得MDM方案更难实现它的所有预期优势,并可能导致更高的数据管理总成本。此方法的风险是组织可能以“两个领域中的最差”而告终,至少部分上如此–—已在MDM方案中投资,但是只能实现一些潜在优势,即在整个企业内获得干净、精确、及时以及一致的主数据。


  改进方法:


  有三个方法可超越应对型数据治理。


  1. 用户将数据直接输入到多领域MDM系统中:用户使用界面友好的前端将数据直接输入到多领域MDM系统中,但是他们的新记录和现有记录的更新留在暂存区域或保留区域,直到数据管理员审核和认证为止。这之后MDM系统才接受插入或更新,以便进行完整的整理、匹配、合并,并将“最佳记录”发布到企业的所有其他应用程序。此方法好过将一个完全不同的应用程序(例如CRM或ERP系统)作为“录入系统”,但是它仍然会出现延迟和效率低下。尽管存在这些缺点,使用暂存区域确实解决了大部分问题,例如不用强制执行重要属性的录入或在创建前不必进行彻底搜索。此外,由于我们并不受传统应用程序或现代CRM或ERP应用程序如何处理数据录入功能的影响,通过不对应对方法进行批量数据移动,我们还大大缩短了时间安排。


  2. 用户输入直接传送到多领域MDM系统中的数据:在外面输入新记录或更新,但是会立即传送到MDM系统,以便自动整理、匹配和合并。异常或例外传送到数据管理员的队列,几个管理员便可支持更多最终用户。这是第一个主动方法的改进,因为我们利用MDM系统的业务规则、数据整理和匹配功能,只要求管理员查看作为整理、匹配和合并流程的例外而弹出的插入或更新。


  3. 用户使用特定于数据治理的前端输入数据:第三个方法是允许最终用户直接录入到多领域MDM系统中,但是应使用专为主动数据治理方法而设计的前端。可专门为最终用户数据录入设定屏幕,您可利用功能齐全的MDM系统允许的自动化、数据整理、业务规则、搜索和匹配等所有功能。因此,不必首先将数据输入到MDM系统的暂存区域中,并且您不需要系统外的单独工作流应用程序。


推荐阅读 查看更多