新闻资讯

数据资产管理的发展趋势

随着数据资产管理生态系统的不断发展,现有的实践体系也在迅速发展,可以从数据对象、数据采集、处理架构、组织职能、管理手段和应用范围六个方面来预测其发展趋势。

数据资产管理

数据对象纷繁复杂。目前,企业数据管理的主要数据对象仍然是结构化的文本数据。未来,随着网络爬虫、视频处理、语音识别、自然语言处理、图像处理、人脸识别等相关技术逐渐成熟并被产业界进一步深度应用,城市数据、视频数据、语音数据、图形图像数据等将被越来越多的进行管理和应用。预计到2020年,66%的企业将采用高级分类处理方案来采集、保存并处理非结构化的数据,以提高分析效率。


管理手段自动智能。依靠“手工人力”的电子表格数据治理模式即将被“自动智能”的“专业工具”取代,越来越多的数据管理员、业务分析师和数据领导者采用“平台工具”来获取数据价值。随着机器学习、深度学习技术的成熟,相关专项解决方案和平台工具系统的技术局限性如效率低、差错率高、扩展性差等将被一一攻破,能够有效地解放人力,提高效率和精度。

应用范围不断扩大。数据的应用范围将由传统的内部应用为主发展为支撑内部和服务外部并重。数据资产的意义价值也从对内强化能力扩展到了对外合作开放上,从而实现数据资产保值到增值的跨越。内部应用一般包括管理优化、研判决策、风险规避、业务拓展、管控成本等。由原来的只应用于领导决策场景扩展到全员业务分析使用。外部运营包括智能推荐、精准营销、分析报告以及风险防控等。

推荐阅读 查看更多